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Abstract

In this paper, curves of AW(k)-type in isotropic space I13 are
defined. Using Frenet frames in isotropic space I13, curvature
conditions of AW(k)-type curves are given. In addition, new
characterizations of Bertrand and Mannheim curves are obtained.
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1. Introduction.
The assumption that our universe is homogeneous and isotropic means

that its evolution can be represented as a time-ordered sequence of
three-dimensional space-like hypersurfaces, each of which is homogeneous
and isotropic. These hypersurfaces are the natural choice for surfaces of
constants time.
Homogeneity means that the physical conditions are the same at every

point of any given hypersurface. Isotropy means that the physical
conditions are identical in all directions when viewed from a given point on
the hypersurface. Isotropy at every point automatically enforces
homogeneity. However, homogeneity does not necessarily imply isotropy.
Homogeneous and isotropic spaces have the largest possible symmetry

group; in three dimensions there are three independent translations and three
rotations. These symmetries strongly restrict the admissible geometry for
such spaces. There exist only three types of homogeneous and isotropic
spaces with simple topology: (a) flat space, (b) a three-dimensional sphere
of constant positive curvature, and (c) a three-dimensional hyperbolic space
of constant negative curvature [7].
Many interesting results on curves of AW(k)-type have been obtained by

many mathematicians (see [1], [3], [4], [5], [6]). Also, Bertrand curves have
been studied in [8] and [11].
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In this paper, we have done a study about some special curves in Isotropic
Space I13 .However, to the best of author’s knowledge, Bertrand andMannheim
curves of AW(k)-type has not been presented in Isotropic Space I13 . Thus,
the study is proposed to serve such a need.
Our paper is organized as follows. In section 2, the basic notions and

properties of a Frenet curve are reviewed. In section 3, we study curves of
AW(k)-type in Isotropic Space I13 . We also study Bertrand and Mannheim
curves of AW(k)-type in section 4.

2. Basic notions and properties
Let α : I → I13 , I ⊂ IR be a curve given by

α(t) = (x(t), y(t), z(t)),

where x(t), y(t), z(t) ∈ C3 (the set of three times continuously differentiable
functions) and t run through a real interval [9].
Let α be a curve in I13 , parameterized by arc length t = s, given in

coordinate form

α(s) = (s, y(s), z(s)). (1)

Then the curvature κ(s) and the torsion τ(s) are defined by [9]

κ(s) = x
0
y
00 − y

0
x
00

(2)

τ(s) =
det(α

0
(s), α

00
(s), α

000
(s))

κ2(s)

and associated moving trihedron is given by

t(s) = α
0
(s) (3)

n(s) =
1

κ(s)
α
00
(s)

b(s) = (0, 0, 1)

The vectors tα, nα, bα are called the vectors of the tangent, principal
normal and binormal line of α, respectively. For their derivatives the
following Frenet formulas hold
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t
0
(s) = κ(s)n(s) (4)

n
0
(s) = −κ(s)t(s) + τ(s)b(s)

b
0
(s) = 0

Scalar product in the Isotropic space I13 is defined by

< X, Y >= x1y1 + x2y2 (5)

where X = (x1, x2, x3) and Y = (y1, y2, y3) . If x1y1 + x1y1 = 0, then

< X, Y >= x3y3.
The isotropic norm of a vector X = (x1, x2, x3) is defined by

kXk =
°°° eX°°° =qx21 + x22

where ∼ on the vector denotes the canonical projection of the vector to the
base plane x3 = 0. If kXk = 0, i.e. if X is an isotropic vector, then the
sumplementary invariant called range of the vector X is introduced

[X] = x3.

If kXk 6= 0, then X called Euclidean vector. [10]
From now on in calculations, " eX " canonical projection of the vectors

are denoted as " X ".
Proposition 2.1. Let α be a Frenet curve of I13 of osculating order 3

then we have

α
0
(s) = t(s)

α
00
(s) = t

0
(s) = κ(s)n(s) (6)

α
000
(s) = −κ2(s)t(s) + κ

0
(s)n(s) + κ(s)τ(s)b(s) (7)

α
IV

(s) = −3κ(s)κ0(s)t(s) + [κ00(s)− κ3(s)]n(s)

+[2κ
0
(s)τ(s) + κ(s)τ

0
(s)]b(s) (8)
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Notation. Let us write

N1(s) = κ(s)n(s) (9)

N2(s) = κ
0
(s)n(s) + κ(s)τ(s)b(s) (10)

N3(s) = [κ
00
(s)− κ3(s)]n(s) + [2κ

0
(s)τ(s) + κ(s)τ

0
(s)]b(s) (11)

Corollary 2.2. α0
(s), α

00
(s), α

000
(s) and α

IV
(s) are linearly dependent if

and only if N1(s), N2(s) and N3(s) are linearly dependent.
Theorem 2.3. Let α be a Frenet curve of I13 of osculating order 3 then

N3(s) =< N3(s), N
∗
1 (s) > N∗

1 (s)+ < N3(s), N
∗
2 (s) > N∗

2 (s) (12)

where

N∗
1 (s) =

N1(s)

kN1(s)k , N
∗
2 (s) =

N2(s)− < N2(s), N
∗
1 (s) > N∗

1 (s)

kN2(s)− < N2(s), N∗
1 (s) > N∗

1 (s)k
. (13)

3. Curves of AW(k)-type.
Definition 3.1. Frenet curves (of osculating order 3) are [1]
i) of type weak AW(2) if they satisfy

N3(s) =< N3(s), N
∗
2 (s) > N∗

2 (s), (14)

ii) of type weak AW(3) if they satisfy

N3(s) =< N3(s), N
∗
1 (s) > N∗

1 (s). (15)

Proposition 3.2. Let α be a Frenet curve of order 3. If α is of type
weak AW(2) then

κ
00
(s)− κ3(s) = 0. (16)

Corollary 3.3. Let α be a Frenet curve of type weak AW(2). If α is a
plane curve then

κ(s) = ∓
√
2

s+ c
; c = const. (17)

Proposition 3.4. Let α be a Frenet curve of order 3. If α is of type
weak AW(3) then

2κ
0
(s)τ(s) + κ(s)τ

0
(s) = 0. (18)
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Corollary 3.5. Let α be a Frenet curve of type weak AW(3). Then

τ(s) =
c

κ2(s)
; c = const. (19)

Definition 3.6. Frenet curves are (see [1])
i) of type AW(1) if they satisfy

N3(s) = 0, (20)

ii) of type AW(2) if they satisfy

kN2(s)k2N3(s) =< N3(s), N2(s) > N2(s), (21)

iii) of type AW(3) if they satisfy

kN1(s)k2N3(s) =< N3(s), N1(s) > N1(s). (22)

Theorem 3.7. Let α be a Frenet curve of order 3. Then α is of type
AW(1) if and only if

κ
00
(s)− κ3(s) = 0 (23)

and
τ(s) =

c

κ2(s)
; c = const. (24)

Proof. Let α be a curve of type AW(1). From Definition 3.6. (i)
N3(s) = 0. then from (11) equality, we have

[κ
00
(s)− κ3(s)]n(s) + [2κ

0
(s)τ(s) + κ(s)τ

0
(s)]b(s) = 0.

Furthermore, since n(s) and b(s) are linearly independent, we get (23)
and (24).
The converse statement is trivial. Hence our theorem is proved.
Corollary 3.8. Every plane curve of type AW(1) is also of type weak

AW(2).
Theorem 3.9. Let α be a Frenet curve of order 3. Then α is of type

AW(2) if and only if

2[κ
0
(s)]2κ(s)τ 2(s) + κ2(s)τ(s)κ

0
(s)τ

0
(s) + κ5(s)τ 2(s)− κ

00
(s)κ2(s)τ 2(s) = 0

(25)
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and

2[κ
0
(s)]3τ(s) + [κ

0
(s)]2κ(s)τ

0
(s) + κ4(s)κ

0
(s)τ(s)− κ

0
(s)κ

00
(s)κ(s)τ(s) = 0

(26)
Proof. If α curve is of type AW(2), (21) holds on α. Substituting (10)

and (11) into (21), we have (25) and (26).
Theorem 3.10. Let α be a Frenet curve of order 3. Then α is of type

AW(3) if and only if

2κ2(s)κ
0
(s)τ(s) + κ3(s)τ

0
(s) = 0 (27)

Proof. Since α is of type AW(3), (22) holds on α. So substituting (9)
and (11) into (22), we have (27).
4. Bertrand Curves and Mannheim Curves of AW(k)-type.
In this section, we give the characterizations of Bertrand and Mannheim

Curves of AW(k)-type.
Remark 4.1. Let α be a Frenet curve of order 3 of I13 . For τ(s) 6= 0, α

is a Bertrand curve if and only if there exist a linear relation

Aκ(s) +Bτ(s) = 1 (28)

where A,B are non-zero constant and κ(s) and τ(s) are the curvature
functions of α [9].
Corollary 4.2. Suppose that κ(s) 6= 0 and τ(s) 6= 0. Then α is a

Bertrand curve if and only if there exist a non-zero real number A such that
[2]

A[τ
0
(s)κ(s)− κ

0
(s)τ(s)]− τ

0
(s) = 0. (29)

Theorem 4.3. Let α : I → I13 be a Bertrand curve with κ(s) 6= 0 and
τ(s) 6= 0. Then α is of type AW(2) if and only if there is a non-zero real
number A such that

2[κ
0
(s)]2κ(s)τ 2(s) +Aκ3(s)κ

0
(s)τ(s)τ

0
(s)− κ2(s)[κ

0
(s)]2τ 2(s)

+κ5(s)τ 2(s)− κ
00
(s)κ2(s)τ 2(s) = 0

(30)

and
2[κ

0
(s)]3τ(s) +Aκ2(s)[κ

0
(s)]2τ

0
(s)− κ(s)[κ

0
(s)]3τ(s)

+κ4(s)κ
0
(s)τ(s)− κ

0
(s)κ

00
(s)κ(s)τ(s) = 0

(31)
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Proof. Since α is of type AW(2), (25) and (216) holds and since α is a
Bertrand curve, (29) equality holds. If both of these equations are considered,
(30) and (31) are obtained.
Theorem 4.4. Let α : I → I13 be a Bertrand curve with κ(s) 6= 0 and

τ(s) 6= 0. Then α is of type AW(3) if and only if

2κ2(s)κ
0
(s)τ(s) +Aκ4(s)τ

0
(s)− κ3(s)κ

0
(s)τ(s) = 0. (32)

Proof. Now suppose that α : I → I13 be a Bertrand curve of type AW(3)
with κ(s) 6= 0 and τ(s) 6= 0. Then the equation (27) and (29) hold on α.
Thus, we get (32).
Definition 4.5. Let α be a curve in I13 . If its principal normal is the

binormal another curve then α is called Mannheim curve in I13 .
Theorem 4.6. Let α be a curve in I13 . Then α is Mannheim curve if and

only if its curvature
κ(s) = c; c = const. (33)

Proof. Let α = α(s) be a Mannheim curve in I13 . Let us denote by
{tα(s), nα(s), bα(s)} the Frenet frame field of α. The curve α(s) is
parametrized by arclength s as

α(s) = α(s) + c1(s)n(s) (34)

for some functions c1(s) 6= 0. Differentiating (34) with respect to s, we find

α
0
(s) = (1− c1(s)κ(s))t(s) + c

0
1(s)n(s) + c1(s)τ(s)b(s). (35)

Since the binormal direction of α(s) coincides with the principal normal
of α(s), we have

c
0
1(s) = 0.

Hence c1(s) = const. The second derivative α
00
(s) with respect to s is

α
00
(s) = −c1(s)κ0(s)t(s) + [κ(s)− c1(s)κ

2(s)]n(s) + c1(s)τ
0
(s)b(s). (36)

Since n(s) is the binormal direction of α(s), we have

κ(s)− c1(s)κ
2(s) = 0. (37)

From (37), we get
κ(s) = c (38)
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where c = 1
c1(s)

.

Conversely, let α(s) be a curve in I13 with κ(s) = 1
c1(s)

. Then the curve

α(s) = α(s) + c1(s)n(s)

has binormal direction n(s). It follows that α(s) is a Mannheim curve which
proves the theorem.
Theorem 4.7. Let α be a Mannheim curve in I13 . Then α is of type

AW(1) if and only if

τ(s) = const. (39)

Proof. Considering Theorem 4.6. in Theorem 3.7., we get (39). Hence
the proof is completed.
Theorem 4.8. Let α be a Mannheim curve in I13 . Then α is of type

AW(2) if and only if
τ(s) = 0. (40)

Proof. Considering Theorem 4.6. in Theorem 3.9., we get (40). Hence
our theorem is proved.
Theorem 4.9. Let α be a Mannheim curve in I13 . Then α is of type

AW(3) if and only if
τ(s) = const. (41)

Proof. Considering Theorem 4.6. in Theorem 3.10., we get (41). Hence
the proof is completed.
Example 4.10. Let α be a curve in I13 given by

α(u) =
³
a cos

u

a
, a sin

u

a
, 0
´

Then we have

α0(u) =
³
− sin u

a
, cos

u

a
, 0
´

α00(u) =

µ
−1
a
cos

u

a
,−1

a
sin

u

a
0

¶
Using (2) equality, we get κ(s) = 1

a
, τ(s) = 0. κ(s) and τ(s) hold on

Theorems of 3.9, 3.10, 4.3, 4.4 and 4.8.
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